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In the past 20 years, the incidence of childhood neurobehavioural 
disorders such as autism and ADHD have increased worldwide1  

In the 1970s, autism was estimated to affect up to 5 in 10,000 
children2, now it is 1 in 68 US children3. Whilst the incidence of 
autism in Australia is lower (1:100) according to Autism Spectrum 
Australia4 disturbingly it has increased by 79% between 2009 and 
20125. Better diagnosis and reporting cannot account for this rapid 
rise, nor can genetics, as none of the genes discovered so far seem to 
be responsible for more than a small proportion of cases6. Emerging 
evidence suggests the environment is likely to play a crucial role7. 
The dramatic increase in autism spectrum conditions has occurred 
coincidentally with the deployment of wireless technologies and 
shows remarkable similarities to the pathophysiology following 
exposure to radiofrequency electromagnetic fields8. In addition, 
a growing number of industrial chemicals have been identified 
as neurodevelopmental toxicants9. Since 2006, the number 
of chemicals known to damage the human brain that are not 
regulated to protect children’s health increased to 21410. Research 
conducted by Lintas et al (2012)11 identified immune genes and 
not neurodevelopmental genes as the most consistent abnormality 
typically found in neurodevelopmental disorders. An additional 
finding that further supports the environment as a contributing 
factor is the ‘good and bad days’ observed by parents and the 
transient reversal of symptoms in some children during fever12 and 
short term antibiotic treatments13, all of which question the premise 
that autism is a disease due to a ‘broken brain’. 

Developmental Neurotoxicants

Since WWII, thousands of chemicals have been introduced into 
building materials and consumer products. Since 1970, the global 
sale of chemicals has increased by a factor of 25 from $171 billion 
to $4.1 trillion US dollars and this is expected to accelerate14. It is 
estimated that 84,000 chemicals are used commercially15, 38,000 of 
which listed for use in Australia16.  Consequently the body burden 
of chemicals is increasing with each generation. There is strong 

evidence that industrial chemicals are contributing to a global 
pandemic of neurodevelopmental disorders which affect millions 
of children worldwide, the implications of which have devastating 
consequences on families and the global economy9,17. Despite this, 
neurodevelopmental toxicity data are missing for most industrial 
chemicals in widespread use, even when population wide exposures 
are documented18. Since 2006, eleven industrial chemicals have been 
identified as developmental neurotoxicants: lead, methylmercury, 
polychlorinated biphenyls, arsenic, toluene, manganese, fluoride, 
chlorpyrifos, DDT, tetrachloroethylene and polybrominated 
diphenyl ethers with many more likely to be discovered10. Some like 
lead and mercury have extensive documented histories of adverse 
health effects in children dating back to Roman times; others like 
pesticides, flame retardants and industrial solvents and lubricants 
have gained notoriety because they are ubiquitous throughout 
the environment, they bioaccumulate up the food chain and are 
biologically persistent having been found extensively in wildlife and 
in most of the general population19. Three are listed as persistent 
organic pollutants in the Stockholm Convention and all of them 
are listed as potential endocrine disrupting chemicals on the TEDX 
List (Endocrine Disruption Exchange, 2014)20. 

Flame retardants 

Since the 1970s, flame retardants have been used in consumer 
products to reduce the likelihood that an item will ignite, inhibit the 
spread of a fire, and to provide occupants more time to escape from 
a fire. They have been incorporated into paints, children’s clothing 
(low fire danger pyjamas), foams used in upholstered furniture, 
carpet padding, pillows and mattresses, as well as in plastic housings 
for televisions, computers, telephone handsets, power point fronts, 
light switches and kitchen appliances21.  Consequently the levels 
of flame retardants are greater indoors than outdoors and higher 
in buildings that have recently been renovated, carpeted or are 
air conditioned21. Brominated flame retardants (also referred 
to as polybrominated diphenyl ethers or PBDEs) are the most 
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common flame retardants found in households, eighty of which 
are used commercially in Australia21.  PBDEs are a group of 
more than 200 distinct chemicals that are structurally similar to 
polychlorinated biphenyls22. The three types used commercially 
are pentaBDE, octaBDE and decaBDE each of which contains a 
mixture of congeners of PBDEs. Globally, decaBDEs are the most 
widely used brominated flame retardants as they are incorporated 
into wiring insulation, television and computer casings23.

PBDEs have gained notoriety amongst the scientific community 
because their bioaccumulative and persistent nature, in addition 
to their endocrine disrupting effects, has adverse health 
outcomes in animals and humans24.  Consequently tetraBDE 
and pentaBDEs are listed as persistent organic pollutants in the 
Stockholm Convention25.  Prenatal and childhood exposures to 
PBDEs in both human and animal studies resulted in increased 
hyperactivity, lower IQ and significant deficits in learning and 
memory26-29. The mechanism of action is likely to be via its 
thyroid disrupting effects30 although a smaller number of studies 
have also examined disruption of the oestrogen/androgen 
hormone system31. That’s a concern in light of the fact that 
the levels of PBDEs measured in the breast milk and blood of 
Australians is twice as high as those found in Europeans32-33 

although it is lower than that found in Californian children who 
have the highest levels as a result of their fire safety law28.  Since 
PBDEs are semivolatile, they are not chemically bound to the 
substrate material which is why they are commonly found in 
household dust which accounts for 80% of the total exposure to 
PBDEs in infants as compared to only 14% in adults34. As a result 
of this, blood concentrations of PBDEs in children is considerably 
higher than those found in adults34. Inhalation and ingestion 
of household dust is likely to be the most common route of 
exposure which makes young children particularly vulnerable35. 
The European Union has consequently mandated the phase out 
of certain PBDEs. Whilst NICNAS has banned the import and 
manufacture of two brominated flame retardants - pentaBDE 
and octaPBDE, it has not restricted their use in imported 
products (where children are most likely to be exposed), relying 

instead on a decline of these chemicals from voluntary activity by 
industry and to the lack of commercial availability as a result of 
international regulatory action36. At the same time, they insist that 
“there is no evidence of any adverse health effects in newborns, 
children or adults from exposure to PBDEs”36.  In light of recent 
evidence associating prenatal and early childhood exposure to 
PBDEs with a decline in IQ and increased hyperactivity29,37, 
assumptions of safety can no longer be taken for granted.  

Lead

Lead has a long history of adverse health effects dating back to 
Roman times. Unlike other developmental neurotoxicants, it is 
the most common and best understood childhood disease of 
toxic environmental origin that accounts for 0.6% of the global 
burden of disease38. The deleterious effects of blood lead levels 
above10 ug/dL on brain function are well documented and 
include lowered intelligence and behavioural problems39-42. At 
lower levels of exposure that previously were considered safe, lead 
is now known to produce a spectrum of injury across multiple 
body systems43. A growing number of studies have shown that 
levels lower than 10 ug/dl are associated with adverse health 
effects such as inattention44, cognitive loss45-46,Attention Deficit 
Hyperactivity Disorder47, reduced IQ and increased antisocial 
behaviour43 and delays in sexual maturation in adolescent girls 
and boys46. The mechanism of action involves demyelination 
of neurons, death of brain cells, and disruptive effects on the 
dopaminergic system48. Many are questioning as to whether 
there are any ‘safe’ blood lead levels43. Consequently Germany has 
lowered its action level to 3.5 ug/dl, the US Centers for Disease 
Control to 5 ug/dl, and the NHMRC is currently reviewing 
Australia’s action level currently set at 10 ug/dl. Australian 
children are especially at risk as it is estimated that 3.5 million 
homes contain paint with 50% lead content which is just one 
of several sources of lead in the environment49. An Australian 
national survey of lead in 1,575 children found an average of 5 
ug/dl in 1 to 4 year olds (7% exceeded 10 ug/dl) although this 
was conducted before leaded petrol was phased out in 200250-51. 
Nonetheless, inhalation and ingestion of house dust containing 
leaded paint remains a common source of exposure in young 
children. 

Pesticides

The adverse health effects arising from pesticide exposure gained 
worldwide attention when Rachel Carson documented the 
abnormal mating behaviour in bald eagles and the collapse of 
the eagle population that were exposed to high levels of DDT in 
her book Silent Spring52. Organochlorine pesticides (OC) such 
as DDT, dieldrin, aldrin, heptachlor and chlordane were used 
extensively in Australia during the 1950s to mid-1970s, but were 
subsequently phased out by 1990 following serious adverse health 
effects in animal and human studies and because they persist in 
the environment. They were replaced with the organophosphate 
pesticides (OP) which are widely used in agriculture primarily 
because their half-life is significantly shorter. Approx. 5,000 
tonnes of OP are used annually in Australia53. 

Whilst data associated with acute and/or accidental poisonings 
of pesticides in children is readily available, little data is available 
on subclinical pesticide exposure despite the fact that it is so 
widespread10.  In 1998, Australian doctors at Townsville Hospital 
tested the meconium of 46 newborn babies and found a wide 
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range of hazardous chemicals including POPs and pesticides 
such as chlorpyrifos54. Data which describes the full, or even 
partial, extent of human health effects from exposure to pesticides 
is difficult to source due to potential long latency periods for 
chronic illness, the difficulty in diagnosis, the non-specific nature 
of pesticide health effects and the lack of effective monitoring 
systems55. Three prospective epidemiological birth cohort studies 
provide new evidence that prenatal exposure to OP pesticides 
can cause developmental neurotoxicity56-58. More recently, the 
Childhood Autism Risks from Genetics and Environment 
(CHARGE) study identified that children with ASD were 60% 
more likely to have organophosphates applied near their home, 
whilst children with developmental delays were 150% more 
likely to have carbamate pesticides applied near the home during 
pregnancy59. The mechanism of action is likely to be due to the 
fact that these pesticides are inhibitory neurotransmitters which 
are necessary in the development and maintenance of neuronal 
transmission. Prenatal exposure to OP pesticides in animal 
studies have demonstrated more severe neurodevelopmental 
effects for males than for females, suggesting endocrine disruption 
maybe involved60. Other classes of pesticides including the 
carbamates and the synthetic pyrethroids have also been linked to 
neurodevelopmental deficits in children59,61-62.

Children are more vulnerable to pesticides because they receive 
a larger dose per unit of body weight for a given exposure due 
to their smaller body size63, their unique diet (pureed fruit, 
vegies…), their breathing zone is closer to the floor, and the 
enzyme involved in detoxification - paraoxonase-1 (PON-1) 
is less active making them more vulnerable to OP toxicity64. 
Children are exposed to pesticides through inhalation (household 
dust, spraying), ingestion (food, drinking water and accidental 
poisoning) and dermal absorption (lice and scabies treatment, 
insect repellants, lawn, household dust…). Levels of pesticides in 
carpet dust can be useful indicators of exposure in epidemiologic 
studies, particularly for young children who are in frequent 
contact with carpets65. Pesticides may persist for long periods of 
time inside the home, where they are protected from degradation 
by sunlight, rain, temperature extremes, and microbial action66. 
Carpets are repositories for pesticides67-68 as the fibres and 
underlying foam pad appear to act as long-term reservoirs that 
continuously transfer pesticides to carpet dust. 

Endocrine disrupting chemicals (EDCs)

All of the neurodevelopmental toxicants highlighted by 
Grandjean and Landrigan (2014)10 are listed as potential 
endocrine disrupting chemicals (EDCs) on the TEDX List 
(Endocrine Disruption Exchange, 2014). EDCs pose an 
additional concern for the unborn foetus and children because 
unlike other chemicals, their impact on cognition and behaviour 
is likely to arise at low levels of exposure during critical windows 
of development1. EDCs may well provide a vital clue as to why 
males are up to five times more likely to develop autism than 
females as highlighted by a recent spatial incidence study involving 
one third of the entire US population using insurance claims 
datasets. The authors concluded that the strongest predictors 
for autism were associated with the environment, as autism 
incidence was strongly linked to congenital malformations of the 
reproductive system in males which are not typically associated 
with genetic causes (an increase in autism incidence by 283% for 
every per cent of increase in the incidence of malformations)69. 
The incidence of genital malformations such as cryptorchidism 
and hypospadias has increased in recent times. The prevalence 

of hypospadias rose 2% every year between 1980 and 2000 
in Western Australia70 and similar trends were seen in South 
Australia71 but not in Victoria or NSW. These malformations 
typically arise during early embryonic development – specifically 
between weeks 9 to 12 which corresponds to the time when 
cell division and migration takes place in brain development72. 
Coincidentally it is also the time when maternal exposure to 
xeno-oestrogens in animal models affects both the brain and 
genital development in male progeny72. Xeno-oestrogens are 
found in a number of environmental toxins including (but not 
limited to) OP pesticides, polybrominated flame retardants and 
polychlorinated biphenyls. A study published in 2007, identified 
that babies born with cryptorchidism or hypospadias had a more 
than 2.5 fold increased risk of having detectable levels of DDT 
and its metabolite DDE, lindane and several other organochlorine 
pesticides in their blood73. Some researchers have explained 
the gender bias seen in autism as a result of the fact that the 
female brain requires more extreme genetic alterations than does 
the male brain to produce symptoms of neurodevelopmental 
disorders (not related to the X chromosome)74. Gender bias is 
present in several neurodevelopmental disorders including autism, 
intellectual disability, and attention deficit hyperactivity disorder.

Part 2 will appear in the March 2015 Journal.
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